Testing
Exceptions
Learning Objectives
- Learn when and how to raise exceptions in your own code
- Understand “re-raising” an exception
Exceptions are the standard error messaging system in most modern programming languages. When an error is encountered, an informative exception is ‘thrown’ or ‘raised’. When we program in Python, we encounter such exceptions all the time, but we can also raise them from our own code. One of the main use cases is argument checking: when a function receives input that does not make sense, it should raise an error to inform the user (ideally with a clear error message) instead of just going on and producing non-sensical results.
For example, consider the following function that rescales a numpy array to a given range:
def rescale(data, lower=0.0, upper=1.0):
"""
(Linearly) rescale the data so that it fits into the given range.
Parameters
----------
data : ndarray
The data to rescale.
lower : number, optional
The lower bound for the data. Defaults to 0.
upper : number, optional
The upper bound for the data. Defaults to 1.
Returns
-------
rescaled : ndarray
The data rescaled between ``lower`` and ``upper``.
"""
data_min = numpy.min(data)
data_max = numpy.max(data)
normalized_data = (data - data_min) / (data_max - data_min)
rescaled_data = lower + (upper - lower) * normalized_data
return rescaled_data
What is this function supposed to do for an array where all elements are identical? If we don’t handle this case, we will not get any error message but a “not-a-number” result because of the division by zero, together with a somewhat cryptical warning from numpy:
print(rescale(numpy.array([1, 1, 1])))
[...]/lib/python3.5/site-packages/ipykernel/__main__.py:21: RuntimeWarning: invalid value encountered in true_divide
[ nan, nan, nan]
Imagine that we use the rescale
function as part of a complex analysis script – in the end we might end up with a lot of nan
values not knowing where they came from.
So instead, let’s handle that case explicitly and raise a ValueError
(a built-in error class for “an argument that has the right type but an inappropriate value”):
def rescale(data, lower=0.0, upper=1.0):
data_min = numpy.min(data)
data_max = numpy.max(data)
if not data_max > data_min:
raise ValueError('Cannot rescale data: all values are identical.')
normalized_data = (data - data_min) / (data_max - data_min)
rescaled_data = lower + (upper - lower) * normalized_data
return rescaled_data
Once an exception is raised, it will be passed upward in the program scope:
rescaled = rescale(numpy.array([1, 1, 1]))
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-21-8f4a617cc5ab> in <module>()
----> 1 rescale(numpy.array([1, 1, 1]))
<ipython-input-20-032c2e2b8094> in rescale(data, lower, upper)
20 data_max = numpy.max(data)
21 if not data_max > data_min:
---> 22 raise ValueError('Cannot rescale data: all values are identical.')
23 normalized_data = (data - data_min) / (data_max - data_min)
24 rescaled_data = lower + (upper - lower) * normalized_data
ValueError: Cannot rescale data: all values are identical.
An exception can be used to trigger additional error messages or an alternative behavior. Rather than immediately halting code execution, the exception can be ‘caught’ upstream with a try-except block. When wrapped in a try-except block, the exception can be intercepted before it reaches global scope and halts execution.
To add information or replace the message before it is passed upstream, the try-catch block can be used to catch-and-reraise the exception. We can use this at the beginning of our function. Note that trying to calculate the minimum of an empty array will raise a ValueError
:
empty_array = numpy.array([])
print(numpy.min(empty_array))
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-26-bfb6cf9e1059> in <module>()
1 empty_array = numpy.array([])
----> 2 print(numpy.min(empty_array))
[...]/lib/python3.5/site-packages/numpy/core/_methods.py in _amin(a, axis, out, keepdims)
27
28 def _amin(a, axis=None, out=None, keepdims=False):
---> 29 return umr_minimum(a, axis, None, out, keepdims)
30
31 def _sum(a, axis=None, dtype=None, out=None, keepdims=False):
ValueError: zero-size array to reduction operation minimum which has no identity
This error message is rather cryptic and someone (ourselves included) accidentally calling the rescale
function with an empty array will probably not directly see the problem:
rescaled = rescale(empty_array)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-28-138793fc8d38> in <module>()
----> 1 rescaled = rescale(empty_array)
<ipython-input-20-032c2e2b8094> in rescale(data, lower, upper)
17 The data rescaled between ``lower`` and ``upper``.
18 """
---> 19 data_min = numpy.min(data)
20 data_max = numpy.max(data)
21 if not data_max > data_min:
[...]]/lib/python3.5/site-packages/numpy/core/_methods.py in _amin(a, axis, out, keepdims)
27
28 def _amin(a, axis=None, out=None, keepdims=False):
---> 29 return umr_minimum(a, axis, None, out, keepdims)
30
31 def _sum(a, axis=None, dtype=None, out=None, keepdims=False):
ValueError: zero-size array to reduction operation minimum which has no identity
We can catch this exception and provide a more “friendly” error message:
def rescale(data, lower=0.0, upper=1.0):
try:
data_min = numpy.min(data)
except ValueError:
raise ValueError('Could not calculate the minimum of the input data -- maybe it is empty?')
data_max = numpy.max(data)
if not data_max > data_min:
raise ValueError('Cannot rescale data: all values are identical.')
normalized_data = (data - data_min) / (data_max - data_min)
rescaled_data = lower + (upper - lower) * normalized_data
return rescaled_data
Now the problem should be clear and at the same time we don’t lose any information about the original error:
rescaled = rescale(empty_array)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-29-addc726e55bb> in rescale(data, lower, upper)
19 try:
---> 20 data_min = numpy.min(data)
21 except ValueError:
[...]/lib/python3.5/site-packages/numpy/core/_methods.py in _amin(a, axis, out, keepdims)
28 def _amin(a, axis=None, out=None, keepdims=False):
---> 29 return umr_minimum(a, axis, None, out, keepdims)
30
ValueError: zero-size array to reduction operation minimum which has no identity
During handling of the above exception, another exception occurred:
ValueError Traceback (most recent call last)
<ipython-input-30-138793fc8d38> in <module>()
----> 1 rescaled = rescale(empty_array)
<ipython-input-29-addc726e55bb> in rescale(data, lower, upper)
20 data_min = numpy.min(data)
21 except ValueError:
---> 22 raise ValueError('Could not calculate the minimum of the input data -- maybe it is empty?')
23 data_max = numpy.max(data)
24 if not data_max > data_min:
ValueError: Could not calculate the minimum of the input data -- maybe it is empty?
Alternatively, the exception can simply be handled intelligently. If an alternative behavior is preferred, the exception can be disregarded and a responsive behavior can be implemented like so:
def rescale(data, lower=0.0, upper=1.0):
try:
data_min = numpy.min(data)
except ValueError:
return numpy.array([])
data_max = data.max()
if not data_max > data_min:
raise ValueError('Cannot rescale data: all values are identical.')
normalized_data = (data - data_min) / (data_max - data_min)
rescaled_data = lower + (upper - lower) * normalized_data
return rescaled_data
If a single function might raise more than one type of exception, each can be caught and handled separately.
def rescale(data, lower=0.0, upper=1.0):
try:
data_min = numpy.min(data)
except ValueError:
return numpy.array([])
except TypeError:
raise TypeError('Can only re-scale numerical data.')
data_max = numpy.max(data)
if not data_max > data_min:
raise ValueError('Cannot rescale data: all values are identical.')
normalized_data = (data - data_min) / (data_max - data_min)
rescaled_data = lower + (upper - lower) * normalized_data
return rescaled_data
print('rescaled empty array: ', rescale(empty_array))
print('rescaled non-numerical array:', rescale(numpy.array(['not', 'numbers'])))
rescaled empty array: []
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-31-76a2830c5c37> in rescale(data, lower, upper)
19 try:
---> 20 data_min = numpy.min(data)
21 except ValueError:
/home/marcel/anaconda/envs/swc_lesson/lib/python3.5/site-packages/numpy/core/fromnumeric.py in amin(a, axis, out, keepdims)
2358 return _methods._amin(a, axis=axis,
-> 2359 out=out, keepdims=keepdims)
2360
/home/marcel/anaconda/envs/swc_lesson/lib/python3.5/site-packages/numpy/core/_methods.py in _amin(a, axis, out, keepdims)
28 def _amin(a, axis=None, out=None, keepdims=False):
---> 29 return umr_minimum(a, axis, None, out, keepdims)
30
TypeError: cannot perform reduce with flexible type
During handling of the above exception, another exception occurred:
TypeError Traceback (most recent call last)
<ipython-input-39-6122b616c671> in <module>()
1 print('rescaled empty array: ', rescale(empty_array))
----> 2 print('rescaled non-numerical array:', rescale(numpy.array(['not', 'numbers'])))
<ipython-input-31-76a2830c5c37> in rescale(data, lower, upper)
22 return numpy.array([])
23 except TypeError:
---> 24 raise TypeError('Can only re-scale numerical data.')
25 data_max = numpy.max(data)
26 if not data_max > data_min:
TypeError: Can only re-scale numerical data.
Catch all
Sometimes it is not obvious what type of exception to catch and an easy solution seems to be to catch any exception with except Exception
. Why is this not a good idea?
Checking or trying?
What is the advantage of using try
/except
over an explicit type check? Compare these two functions that return the minimum and maximum as a tuple:
def minmax1(data):
try:
data_min = numpy.min(data)
data_max = numpy.max(data)
except TypeError:
raise TypeError('Need numerical data.')
return (data_min, data_max)
def minmax2(data):
if not isinstance(data, numpy.ndarray):
raise TypeError('Need numerical data.')
data_min = numpy.min(data)
data_max = numpy.max(data)
return (data_min, data_max)
Hint: Could the input data
be something else than a numpy array and still be meaningful?
Exceptions can be very helpful to the user. However, for checking the internal consistency of an algorithm, a simpler mechanism called assertions can be used.